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Eulerian statistically preserved structures in passive scalar advection
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We analyze numerically the time-dependent linear operators that govern the dynamics of Eulerian correla-
tion functions of a decaying passive scalar advected by a stationary, forced two-dimensional Navier-Stokes
turbulence. We show how to naturally discuss the dynamics in terms of effective compact operators that display
Eulerian statistically preserved structures which determine the anomalous scaling of the correlation functions.
In passing we point out a bonus of the present approach, in providing analytic predictions for the time-
dependent correlation functions in decaying turbulent transport.
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[. INTRODUCTION To understand the progress made, we rewrite the dynami-
cal equation ford(r,t) in the shorthand form
The aim of this paper is to discuss the statistical physics
of turbulent advection of passive scaldfd. We are inter- a0(r,t) L0+ (D) 5
ested in scalar fieldg(r,t) which are advected by a velocity at ’ e

field u(r,t) such that together they solve the set of equations _
where in the present casé=u-V—«A. In recent work

u [4,5] it was clarified why and how passive fields exhibit

- F(u-Vyju=—Vp+rAu+f, (1) anomalous scaling, when the velocity field is a generic tur-
bulent field. The key is to considerdecaying problenas-
sociated with Eq(5), in which the forcingf(r,t) is put to

a0
E+(U~V)0=KA o+f. (2)  zero. The problem becomes then a linear initial value prob-
lem,
In these equationg(r,t), v, andk are the pressure field, the a0lot= L0, (6)

kinematic viscosity, and the scalar diffusivity, respectively.

In this paper, the Navier-Stokes equations will be alwayswith a formal solution

forced with a time-stationary forcinffr,t). The scalar field

will be forced or unforceddecaying, depending on our in-

terests below. We focus on the case of high Reynolds number

Re and high Peclet number Pe, i.e,x—0, where the tur- )

bulence of the velocity field is fully developed and whereWith the operator

both fields display a significant range of scaling behavior at .

scales that are sufficiently far from the forcing scales. R(r,r’,t)ET*ex;{J dsc(s)
A major theoretical question that had been answered re- 0

cently has to do with the scaling properties of the correlation

functions of the advected fie(@,3]. Define the simultaneous and T* being the time ordering operator. Define next the

6(r,t)=J dr'R(r,r',t)6(r’,0), (7

, 8

r,r!

many-point correlation functiorfF™(r;, ... ry) in the time-dependentorrelation functions of the decaying prob-
forced case by lem:
FMN(r, ) =(0(r,0) 0(r,t) - 0(ry D)), (3) CMN(ry, D) =(0(r, 1) - 0(ry 1), 9

with (- - ) denoting an average with respect to realizationg-ere pointed brackets without subscripefer to the decay-

of the stationary forcingf(r,t) and of the velocity field ing object in which averaging is taken with respect to real-
u(r,t). It had been known for a long time that for high Re izations of the velocity field and initial conditions. As a result
and Pe these functions are homogeneous functions of thedf Eq. (7) the decaying correlation functions are evolved by

arguments, i.e., a propagatorPN(r,p,t) (with r=ry,rp, ... ry and p
EPliPZi"'ipN): o - a
F(N)()\I’l, . ,)\FN)Z)\gNF(N)(I’l, . .I’N), (4)
: ; ; : : cNr,ty= | dpPMN(r,p,t)CM™(p,0). (10)
with ¢y being a scaling exponent that in generahisoma- " P h.p P,

lous i.e., cannot be guessed from dimensional consider-
ations. But only recently it became clear how these expo- In writing this equation we made explicit use of the fact
nents are determined by the dynamical processes. that theinitial distribution of the passive field(r,0) is sta-
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tistically independent of the advecting velocity field. Thus Il. SIMULATIONS

N) . . .
the operator™ ([”_”t) can be written explicitly as We performed a direct numerical simulatigpNS) of

N _ Egs. (1) and(2) on a 20482048 two-dimension&2D) ar-
(1P )=(R(r,pr,HR(r2,p2,1) - - - R(ry, py 1) ray. The forcingf in Eq. (1) is random,s-correlated in time,
isotropic, and homogeneous. kglependence is

The key finding[4,5] is that the operataPN)(r, p,t) pos- ([f(k)| )k exd —0.5k/10242]. (15)
sesses &eft eigenfunction of eigenvalue 1, i.e., there exists

(for eachN) a time-independent functio&™(r) satisfying  This forcing is biased towards the small scales; this is done
- because of the inverse energy cascade that characterizes two-

dimensional turbulence. The fluid dissipation is modeled by
z(N)(r):f dpZzM(p)PMN(r,p,t). (12)  a hyperviscosity term proportional th®u. In addition we
- - - - employed a “friction” term proportional tou in order to
. o stabilize the velocity field on the largest scales. The passive
The functionsz™ are referred to as “statistically preserved fig|q g dissipates normally as shown in E@).
structures,” being invariant to the dynamics, even thotigh The simulations were performed for a decaying passive

operator is strongly time dependent and decayifgw 10 fie|d ¢, that is, the forcind in Eq. (2) was put to zero. The
form, from these functions, infinitely many conserved vari-jnitial conditions for thed field were of the form

ables in the decaying problem was shown in Réf, and is

discussed again in Sec. Ill. The functiofi®)(r) are homo- Bk, t=0)= 8(k—ko)expfi v(K)] (16)
geneous functions of their arguments, with anomalous scal-

Ing exponentsy : whered(k,t) is the Fourier transform of the real space vari-

able defined as
ZMNOD=ANZMN () + - (13
- - ~ 1 .
h(k)=5—| drh(r)e '« 1

where “. - .” stand for subleading scaling terms. Since Eg. (k) 27-J rh(re (17

(12) containsZ™)(r) on both sides, the scaling exponeht _ _ _ _

cannot be determiined from dimensional considerations, androm now on we will omit the tilde above the functions and
it can be anomalous. More importantly, it was shown that thelenote thex space functions only by their variabeg/(k) is
correlation functions of the forced case€™(r) Eq.(3), have @ random variable in the*lntervaje[0,27r] where (k) =
exactly the same scaling exponents Z¥(r) [5]. In the ~_ Y(—K), ensuring thate™ (—k,0)=6(k,0), and therefore

. that 6(r,t) is real.
scaling sense As the initial conditions foré and the forcing of theu

fields are both homogeneous and isotropic so are the scalar

correlation function€M™(ry, - - - ,ry,t) defined in Eq(9), at

all timest. We measured thk space correlation functions:

This is how anomalous scaling in passive fields is under-

stood. CMN(Ky, ... kn 1) 8(ky+ - - +ky)=(0(ky,b)- - O(ky 1)),
Besides exactly soluble examples in which the advecting (19

velocity field is nongeneridi.e., 5-correlated in timg the ) ) o »

existence of eigenfunctions of eigenvalue 1 of the time-Where again the averade- -) is over initial conditions and

dependent propagator was demonstrated fully only in shefPVer reqhzaﬂpns qf tha field. The s function appears due to

models of turbulence. While the present authors believe thdfanslational invariance. .

shell models contain a lot of the robust properties of real |n accordance with Eq10) we define thek space propa-

turbulence, this belief is not universally accepted in the com9ator:

munity. It is therefore necessary to demonstrate that the

mechanism sketched above exists indeed in the full problem, C(N)(k,t)zf dk’ PN (k,k’,t)CN(k’,0). (19

Egs.(1) and(2). This had been done for third-order correla- - - -— -

tions within the Lagrangian formulation in R¢B]. The aim

of this paper is to demonstrate this in the Eulerian frame, and A. The two-point propagator

for correlation functions of order 2, 4, and 6. The only two-point correlator that is not zero @&?)(k
In Sec. Il we describe the simulations of E¢¥) and (2) 1) =(6(K) 6% (K)). Because of the isotropy of the initial

nd th fm rements that w rformed. ion Il ™" o )
and the type of measurements that we performed. Sectio onditions and the driving field, the correlator depends only

is a theoretical digression, in which we analyze an exactlf th itude ok Wi theref ider th
soluble simple model to guide ourselves as to how to analyz8n e magnitude ok. Ve can tereiore consider the

the numerical results to find the scaling forms of ittle-oder Second-order sttucture functio®)(k,t) = C(k, ~k.t),
propagators and their eigenfunctions. Section IV describednd it propagato(k,k’,t).

the analysis of the data, and Sec. V offers a discussion and a In discretek space(as in our simulation on a gricthe
summary of the paper. propagator™?(k,k’,t) has a matrix representation. For the

FN(r)~zM(). (14)
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FIG. 1. P@(k,300¢) for nine different times. The first time is
T30, I-€., the eddy turnover time at scate=30, in lightest gray.
Later times, in darker and darker grays, are &2 3759, etc., until
97'30.

choice of initial conditions as in Eq16), S*)(k,t) is simply
the koth column of the propagator

S(Z)(k,t)=J dk’ Pk, k', 1)SP(k’,00=P(k,Kkg,t).
(20)

PHYSICAL REVIEW E 68, 036303 (2003

the DNS partial information on the dynamics of the
2N-order structure functions withi>1:

SEV (k) =([6(k,H[*). (21)

Accordingly we define the reduced propagators:
s<2N>(k,t)=f dk PN (k,k',H)SENV(K',0. (22

We note that one does not expect single power laws for
the fused N-order structure functions withN>1; they ge-
nerically include subleading contributions pertaining to prod-
ucts of lower order structure functions. Moreover, the re-
duced propagators are not Hermitighe full ones arg and
therefore do not lend themselves to direct eigenvalue-
eigenfunction decomposition. We will therefore solve explic-
itly a simple model in the following section to learn how to
think about the scaling properties of the fused propagators.
The numerics show clearly that the qualitative features of the
reduced propagators are the same as those seen in the
second-order propagator, and therefore a scaling analysis is
expected to be still useful. In Fig. 2 we present the numerical
results for the fourth- and sixth-order reduced propagators, at
the same 9 different times, stressing the similar qualitative
behavior to that of the two-point propagator. We will learn in
the following section how to think about the scaling proper-
ties of these objects and how to replot the numerical results

In Fig. 1 we plot such a column of the two-point propagator,in proper rescaled variables.

at nine different times. Two properties of the propagator

should be noticed: as time progresses the overall amplitude Il AN EXACTLY SOLVABLE CASE
decreases due to the decay, while the maximum moves from

the initial k, to lower values ok. In Secs. lll and IV we will
find the scaling form of this propagator.

B. Multipoint propagators
In the case of the multipoint correlator the overdfiunc-

In order to motivate the data analysis presented in Sec. IV
we turn now to the Kraichnan model for passive scalar ad-
vection. The model is exactly solvable, and examining the
analytic forms of the propagators offers clues to what should
be expected in the generic case. In principle we could per-
form this analysis in terms of the Kraichnan model for a

tion and the isotropy of the fields do not reduce the depentwo-dimensional passive scalar. In fact, it is sufficient to con-
dence to a one-variable function. The propagators are thersider the shell-model version; the latter is very transparent to
fore functions of many vectors. It turns out however that analytic manipulations, and for our purposes the results
measurement of the statistics for objects depending on marthirow equally useful light on how to perform the analysis of

k vectors is very taxing. We opted therefore the extract fronthe DNS results.

10

k

FIG. 2. P“)(k,3001) (upper paneland P®)(k,300t) (lower panel for the same nine different times as in Fig. 1.
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A. The Kraichnan shell model

The Kraichnan shell model for passive scalar advection oo
[4,6], as all other shell models of turbulent flows, is written 2%
~— &

in terms of Fourier components of the field. The Fourier & o2 I
components are restricted to shells denoted by the imgex o - 'l,‘
and the equation takes on the form R buuiiuininitis » —REa
4o = 02 .
m
Wzﬁm,nanv -0.4 ]
'Cm,n: IKm+1Um+10m+ 1nt ikmu’rkn&m— in— Kkr2n5m,n . 5 10 15 20 25 30
(23 "

FIG. 3. A plot of the eigenvectorg®'® (squares and 235,

Herek,, are the shelk vectors,k,,=ko\™ for somek, and (triangles, for ne[0,30].

\. The shell components of the velocity field,,(t), are
Gaussian random variables;correlated in time, satisfying  ¢oys term, their support is in the viscous range, and they can

(U (OUE(E))= Co 8 rd(t—t' )N~ €M, (24)  essentially be taken to b@(*% = 5, , for some shell with
mem i the shell indexq>my, above which viscosity dominates Eq.
Here ¢ is the scaling exponent of thefield. (25). The transition shelin, is determined by the condition
kk? =c0k§2. For the fast modes we have the following ap-
md md
B. The second-order propagator proximate equation:
The second-order correlator satisfies the explicit equation d
(see Ref[5]) a#’fﬁz’m: — kkZy2a) (31)
d
asff)(t) = (M~ kkd)SP(1), (25 therefore their eigenvalues gy = — xk?.

For slow modes){*? , which have their support on shells
where S{2)(t) is the shell equivalent of the second-order smaller thanmg, the dissipative term can be neglected and

structure function in Eg(20), they satisfy an eigenfunction equation of the form
SO(t)=(|6,(D)2). (26) BaE V=M. (32
The time evolution operatdvl® has the form For a sufficiently large inertial range we can use the scal-
ing property(29) to get
M(2)=(a +a +1)5 —a 5_1 - +15 +1m>»
n,m n n n,m nn—-1m n n+1m (27) Iqung): )\*gsz 5123 p,m+p¢§7%q) . (33)
where Shifting indices we rewrite
143 B lp({ﬂ):)\—{sz(z) w(zfi) ) (34)
anE—coké(k—”) = —Cokg\ 42", (28 e mmemep
0 Defining now a vector
and {,=2—¢ is the dimensional scaling of the two-point — 20 (35
correlation function. The operatdv® has the following Xn=¥n-p>
useful scaling property: we have
— 2 _ 2
A gszr(H?p,m-%—p_ Mr(1|’)n (29 )\§2Plqun: Mgz,r)n)(m- (36)

The second-order propagator has, in the limit of vanishingye can thus defin@’/(z’q+p)5)(n an eigenfunction of the
n 1

viscosity, the explicit form time evolution operatoM‘® with eigenvaluex 2P, .
We can therefore conclude that the eigenvectors and ei-

(2) (t)= (2)
Prim(t) = exp(tM Nom- (30 genvalues may be obtained from each other by shift of the
Note that the time evolution operator and the propagatolnd'ceS:
are both Hermitian, and thus admit an eigenvector decompo- w(z,qup): ¢(2,q) (37)
sition. The time evolution operator has two types of eigen- n+e nov
vectorsy{?? and & which we can regard as slow modes Basp=M2°B,. (38)

and fast modes, respectively. Here the in#lestands for the
eigenmode index. The fast modes are dominated by the vis- Figure 3 demonstrates that indeed two different eigen-
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200 )\{2m p—m
175 )\szpg{)mln()\ézmt): > ase“qﬂnt
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150
p—m
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%0 = Z aée”‘qt
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20 40 60 n80 100 120 140 :fpélr)](t)_ a,_,PE‘n\)n(t)' (43)

FIG. 4. The eigenvalues, plotted from small to large. The eigenyyhere we have used the explicit form of the propagator in
values are well fitted by the analytic predictiohq% (dashed ling Egs. (42) and (28). For m much smaller thamp we can ne-
for the slow modes, and b, (dotted ling for the fast modes. The  glect the second term. Then we conclude that the propagator
transition to the viscous range occurs at sigji=80. is a homogeneous function of the variablgsandt. Explic-
itly, multiplying by t,
functions coincide once shifted with respect to each other. It
follows from Eq.(38) that tp(Z)(kp K, ,t):()\—é“zmt)'p(Z)()\mkp Ko N E2Mt),
(44)

Bq*agq- (39 . o .
For fixed k,, this is a homogeneous function of two argu-

In Fig. 4 the spectrum of the eigenvalues is plotted, showments which can be always written in the form
ing the two expected regions: a region for which the scaling
of the eigenvalues is kﬁz for the slow modes, andk? for P(Z)(kp,kn )= %IA(%U’ (45)
the fast modes. ant

The lowest eigenvalue is proportional ¢&g. The eigen-
function 4{*? associated with it can be calculated explicitly,
and it exhibits a normal, dimensional, scaling in the inertial
range:

for some functionA (x). The symmetry betweep andn is
restored by realizing that the asymptotic form/ofx) is 1k
for largex.

This scaling form was also found in the study of the ge-
neric shell models of passive scalar advectarbitrary time
dependence in the velocity correlation$d] and we will
) L (29) show that the same scaling form survives when we go back
Using Eqs.(37) and(40), which imply thaty;,”™ has a scal- {4 the generic model studied by DNS.
ing “tail” with exponent {,, starting after shely we estab-
lish

P20 (ky ko) 2. (40)

C. The multipoint propagators
¢§‘2,q)o<(kn/kq)*ézoc agla,, g<n<my. (42) The invariance of Eq(23) under a uniform phase change
0,—€'?6, dictates that the only nonzero correlation func-
We now use these results to learn how to rescale oufions will have an equal number of variablés and conju-
numerical data. Suppose that we started with an initial condated variableg;,. We define

dition in some shelh in the inertial rangeS{(0)= 3, . (2N) o AR B
The fast modes do not contribute significantly to the time Cir g iD= 0,0 6 (D] (1) - 67, (D).
dependence, since they decay fast and anyhow have no sup- (46)

port in the inertial range. Thus, using only the slow mode

S, . . ) . .
and Eqs(27) and(30), we have, fop<n, As in the two-point case we can define the respective multi-

point differential time derivative operator, analogous to Eq.
p . (25). In the limit of vanishing viscosity,
SP0=F, uiieryfa - 3, agendaP ().

d N
(42) iGN = Mfyl‘??,i,cf,g‘,’(t). 47

In going from the first to the second line we inserted theThe respective propagator is defined by
S-function initial conditions, getting thus a column of the

propagatorP{)(t). Remember that in our DNS calculations cEV(t)= ifﬁ',)vj,(t)ci(,z’;\',)(O), (48)
we fixed the column index, and are interested in the scaling o T T

i i i i 2N
behavior with respect to the row index and time. Therefore PN ’:eme(ZN))|H|i'~l' _ (49)

we compute nowup to an overall dimensional constant Wi
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Because of the time reversibility of the statistics of the
fields, and the antlherm|t|C|ty of the unaveraged differentialS{™(t) = Z 2 PPN Dty (PN

operator( in Eq. (23), Ly, ,= — Ly m, both the time deriva-
tive operatorM®N) and the propagator itself are Hermitian, p
and therefore admit eigenvalue decomposition. Furthermore => g 2 (Z(ZN 1/62) gagt= PEVM).
the operatoMN) has the following scaling property: ' (ap an)£_ a=
(2N) (2N) (56)
M|J|l _)‘ gszHpHp\l +pj'+p° (50 ) , ,
In going from the first to the second line we have used the
As in the two-point case the dynamics within the scalingfaCt that
range is determined by slow modes, | N1
1L '
e ,im(a—p) (57)

B(kZN,I)wi(?N,I,k)_Ml(Tll\l)J ¢(2N A, k). (51)

This follows directly from Eqs(52) and (54).

In this equation the index stands for a family of eigen- Using the same argumentation as in E4f), we get

modes, andk for their index within the family. Eachfamily
can be obtaine;d from any one of its mem_be_rs by .shifting the |n)(t) E ACND (g 1), (58)
indices. The eigenvalues of the modes within a given family P t)52N (ant)i2ni /22 P
can be obtained also by a shift,
where again th€,’s are dimensional constants and the func-
JRNLEER) 2N (52) tionsA(z'\‘")(x_) are some functions with the asymptotic form
Fpitp b ACND(x)~x¢ni'% for x large. We note that for suffi-
ciently long times and if the scaling exponents are well sepa-
,Bf(%rNF;I)I)\gzp,BE(ZN’I) ) (53  rated, we can expect the sum to be dominated by the leading
scaling exponent.

Note that in the two-point case we had only one family of
eigenmodes. Here we added the indebo the eigenvalues
and eigenmodes to distinguish the different families. Note The detailed analysis that was possible for the simple
also that in Eq(53) the scaling exponent of the eigenvalues model of Sec. Il is not available for the generic model, Eqgs.
is {; this stems from the scaling properties of the differen-(1) and(2). Our strategy is to assume that the scaling forms
tial operatorM@V, cf. Eq. (50). However, the eigenmodes derived in the last section are still valid for the generic
display in general anomalous scaling which can be repremodel, and to demonstrate this by replotting the data accord-

IV. DATA ANALYSIS

sented by ingly. We will see that these predictions are born out by the
data.
R S S (54)
A. analysis of the two-point propagator
where /,y, is the (anomalous scaling exponent of théth In light of Eq. (44), we expect the second-order propaga-
family of éigenmodes. tor P@(k,ko,t) to be, for a fixedk,, a homogeneous func-

Since the DNS's were analyzed in terms of fused objectstion of the variablekt'2, and to decay as tt/
we focus on initial conditions in Eq48) for which all the
2N indices are the same. We also measure the resulting Pk k t)ocEH(Z)(kt”ZZ) (59)
structure functions O ’

SN = ([, [2Y) (55 wher«_eH(z_) is some function. We test the correctness of this
n no form in Fig. 5. To this aim we replot that data shown in Fig.
1 in different coordinates, multiplied kyand as a function of
This procedure will extract a fused propagator for which
there are only two indices, and we denote it below as k= Kktlia, (60)
éz‘ﬁ')(t) This propagator is not Hermitian, it has in general
no eigenfunction decomposition, but we can understand thghe quality of the data collapse appears to strongly support
scaling form of any of its columns from the knowledge of thethe proposed scaling form. We note that the data collapse is

full propagator and its eigenfunctions. superior on the right of the maximum, and less convincing at
The equivalent of Eq(42) for S((ZN)(FO): Ok.ns P<N, its left. We believe that this stems from two reasons. First,

summing over all families of slow modéise., over the index there is better statistics for the right part of the curve, simply

1) is because it belongs to largkrvectors where the angular av-
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[ Z@(k)yP@ (k,300,t)d?k

ll IZ .3 ‘4
10 mktl/@ 10 10 t

~ N . : . FIG. 7. The integral of the two-point propagatef?(k,3001)

FIG. 5. tP?)(k,300¢) f different timeglight gray, earli- _ .

est- dark grz; I(a$t 1) for nine different timeslight gray, earli weighed by the left zero mod&?)(k) (solid line), compared to the
' ' integral of the unweighted second-order structure functawited

. . line).
erage is more extensive. Second, the left part of the curve |'sne)

more sensitive to the finite-size effects, particularly to the (@)Ll
fact that the driving velocity field loses its scaling form close 7@ () P (K K’ 1) d2kor f“‘k_z_ng (ktt¢2) kdk
to L. With all the limitations of the numerical simulations we Y 0 t
consider the data collapse as very satisfactory. A
If the prediction for the two-point function holds, then we © H(k) .
will have the following for the time-dependent integral: = JO R1+£zdk: const, (62

1
t1+1/{2

where we have used the fact that in an isotropic two-
Ve dimensional system we haw&?)(k)~F@(k)ock =2~ %2, We
(61) note that the constancy of this integral should be judged on
the background of the decaying function, as done in Fig. 7.
In Fig. 6, we show that indeed after an initial period the We see that while the second-order structure function decays
integral settles on a scaling form consistent with E{). over three orders of magnitude, the “constant” objects
Using the form of the propagator we can establish thechange by a factor of 2. The lack of constancy can be attrib-
existence of a left eigenmode of eigenvalue 1 of the two-uted to the sensitivity to the outer scale as seen in the data
point propagator. Integrating over the two sides of B®)  collapse in Fig. 5. If the collapse on the left side of the curve
we have a time-independent expression on the left-hand sideere perfect, so would be the constancy of the weighted
We therefore expect that the weighted integral of the propaintegral. Note that in the calculation we have employgd

Fﬁ(2>(k,k',t)dk~ fo(Z)(R)dR“
0 0

gator with the functiorz® will be constant: =0.67 in agreement with Ref7].
B. Analysis of the multipoint propagators
i 07l Examining Eq.(58), we expect that for long times the
= functional form of the propagator for the fused correlation
=] function defined in Eq(22) is
=
s (2N) ’ (2N) (ke
g o _ PED (K ) T HE (ke ), (63)
8o
where{,y is the leading scaling exponent for thélth cor-
relation function. In Fig. 8 we demonstrate the data collapse
obtained by assuming this form for the fourth- and sixth-

" order propagators. We notice the same excellent collapse on
the right-hand side of the function as in the second-order
FIG. 6. The integral of the two-point propagator, propagator. Also the problems with the outer scale show up

J5P?)(k,3001t)d2%k, (solid line) as a function of time. The dotted N @ similar manner, giving less than impressive collapse of
line is the expected(**%2) (time is measured in this figure, and the left hand part of the function. For the present data col-

in the ones that follow, in units of,,, the eddy turnover time of lapse we employed simple scalidigy= N{¢,; our data do not
k=230). support strongly anomalous exponents. We should stress
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FIG. 8. té4/%2P*)(k,3001) (upper panelandtés/é2)(k 300t) (lower panel for nine different timeglight gray, earliest; dark gray,

last.

however that the relatively short scaling range does not allowhere Z2N(k)ock =2~ ¢2n, The quality of the constancy is

a definite statement about the normality vs the anomaly oflemonstrated in Fig. 10. Again finite-size effects lead to
some decrease in time of these weighted objects, which nev-

the scaling exponents.
Using the form of the fused multipoint correlators we canertheless is very much reduced compared to the decaying
again predict the time behavior of their integral: correlation functions.

* V. CONCLUDING REMARKS

@ 1 o
f P(ZN)(k,k,,'[)dk%ﬁf H(k)dk“ﬁ

0 ttr e o tlt+ ez We have demonstrated in this paper that the generic ad-

(64 vection of a passive scalar by a velocity field that obeys the

Navier-Stokes equations can be discussed in terms of Eule-
rian statistically preserved structures. By initiating a decay
with S-function initial conditions(concentrated otk=300)
we have found numerically the corresponding columns of the
Efime-dependent propagators for the second-, fourth- and
sixth-order correlation functiongvhere for the fourth- and
sixth-order objects we considered partiglised”) informa-

In Fig. 9 the time dependence of the integrals is plotted

showing agreement of similar quality to Fig. 6.
As in the two-point case, weighing the fused multipoint
functions by the appropriate multipoint fused steady stat

correlators should yield a constant:

w 42 I : . : :
f 72N () DN (¢ k! t)dzkocf HEW (ktH2) kdk tion]. Note that in contrast to the Lagrangian formulation of
Y 0 k2tlantlan/éz statistically preserved structur¢3], for which there is no
preserved structure corresponding to the second-order corre-

lation, in the Eulerian formulation such an object exists and

= HEN (k)
= fo de: const, had been analyzed explicitly. We have used a sinfptn-
generi¢ model of passive scalar advection to guess the ana-

(65) Iytic scaling form of the propagators in the generic problem.

e Lo 107}
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FIG. 9. The integral of the four-poiritipper panegland six-point(lower pane) propagatorgsolid line), fgfﬂm)(k,SOOI)dzk, compared
with the expected (1 ¢28)/%2 (dotted ling.

036303-8



EULERIAN STATISTICALLY PRESERVED STRUCTURE. .. PHYSICAL REVIEW E 68, 036303 (2003
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FIG. 10. The integral of the four-point propagaff)(k,3001) (upper panéland the six-point propagatét®)(k,300t) weighted by the
left zero modeZ¥(k) andzZ(®)(k), respectively(solid line) compared to the integral of the unweighted objettitted ling.

The test for the relevance of this guessed form is the data In concluding we wish to point out an additional benefit to
collapse shown in Figs. 5 and 8. The guessed time depeithe present formulation. Usually in modeling turbulent ad-
dence appears to be in close correspondence with the data\aection it is customary to resort to dubious concepts such as
shown in Figs. 6 and 9. ‘turbulent diffusion’ in order to write a diffusion equation for
The analytic forms of the propagators predict the existhe correlation functions. The present approach indicates a
tence of eigenmodes with eigenvalue (dtatistically pre- much better procedure, i.e., to find, for a given turbulent
served structurgsWe believe that this is an important dem- field, the form of the propagator which can be then used to
onstration of Eulerian statistically preserved structures in grovide analytic predictions for any initiat 0) correlation
generic flow. The numerical evidence for the constancy ofunction. This procedure may be quite interesting for more
the latter is encouraging, if not fully conclusive, as seen incomplex hydrodynamic flows with unusual boundaries or co-
Figs. 7 and 10. We attributed theelatively small decrease herent structures. We believe that when the turbulence is suf-
in amplitude of the putative statistically preserved structuregiciently well developed scaling forms for the propagator will
to the less than perfect data collapse at the largest scalesist, and once found can be used to solve efficiently any
(smallestk vectorg that are seen in Figs. 5 and 8. These instatistical initial value problem.
turn stem from the intervention of the outer scale in our
sc_ali_ng range, a boundary effe_ct tha_t we did not succged to ACKNOWLEDGMENTS
eliminate in our modest-size simulations. It would be inter-
esting to see whether larger 2D simulations could remove We thank Antonio Celani for providing us with his code
this finite-size effect to demonstrate conclusively the confor DNS of two-dimensional turbulent advection. This work
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