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Eulerian statistically preserved structures in passive scalar advection
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We analyze numerically the time-dependent linear operators that govern the dynamics of Eulerian correla-
tion functions of a decaying passive scalar advected by a stationary, forced two-dimensional Navier-Stokes
turbulence. We show how to naturally discuss the dynamics in terms of effective compact operators that display
Eulerian statistically preserved structures which determine the anomalous scaling of the correlation functions.
In passing we point out a bonus of the present approach, in providing analytic predictions for the time-
dependent correlation functions in decaying turbulent transport.
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I. INTRODUCTION

The aim of this paper is to discuss the statistical phys
of turbulent advection of passive scalars@1#. We are inter-
ested in scalar fieldsu(r,t) which are advected by a velocit
field u(r,t) such that together they solve the set of equati

]u

]t
1~u•“ !u52“p1nDu1f, ~1!

]u

]t
1~u•“ !u5kDu1 f . ~2!

In these equationsp(r,t), n, andk are the pressure field, th
kinematic viscosity, and the scalar diffusivity, respective
In this paper, the Navier-Stokes equations will be alwa
forced with a time-stationary forcingf(r,t). The scalar field
will be forced or unforced~decaying!, depending on our in-
terests below. We focus on the case of high Reynolds num
Re and high Peclet number Pe, i.e.,n,k→0, where the tur-
bulence of the velocity field is fully developed and whe
both fields display a significant range of scaling behavio
scales that are sufficiently far from the forcing scales.

A major theoretical question that had been answered
cently has to do with the scaling properties of the correlat
functions of the advected field@2,3#. Define the simultaneou
many-point correlation functionF (N)(r1 , . . . ,rN) in the
forced case by

F (N)~r1 , . . . ,rN![^u~r1 ,t !u~r2 ,t !•••u~rN ,t !& f , ~3!

with ^•••& f denoting an average with respect to realizatio
of the stationary forcingf (r,t) and of the velocity field
u(r,t). It had been known for a long time that for high R
and Pe these functions are homogeneous functions of
arguments, i.e.,

F (N)~lr1 , . . . ,lrN!5lzNF (N)~r1 , . . . rN!, ~4!

with zN being a scaling exponent that in general isanoma-
lous, i.e., cannot be guessed from dimensional consid
ations. But only recently it became clear how these ex
nents are determined by the dynamical processes.
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To understand the progress made, we rewrite the dyna
cal equation foru(r,t) in the shorthand form

]u~r,t !

]t
5Lu~r,t !1 f ~r,t !, ~5!

where in the present caseL[u•“2kD. In recent work
@4,5# it was clarified why and how passive fields exhib
anomalous scaling, when the velocity field is a generic t
bulent field. The key is to consider adecaying problemas-
sociated with Eq.~5!, in which the forcingf (r,t) is put to
zero. The problem becomes then a linear initial value pr
lem,

]u/]t5Lu, ~6!

with a formal solution

u~r,t !5E dr8R~r,r8,t !u~r8,0!, ~7!

with the operator

R~r,r8,t ![T1expF E
0

t

dsL~s!GU
r,r8

, ~8!

and T1 being the time ordering operator. Define next t
time-dependentcorrelation functions of the decaying prob
lem:

C(N)~r1 , . . . ,rN ,t ![^u~r1 ,t !•••u~rN ,t !&. ~9!

Here pointed brackets without subscriptf refer to the decay-
ing object in which averaging is taken with respect to re
izations of the velocity field and initial conditions. As a resu
of Eq. ~7! the decaying correlation functions are evolved
a propagatorP(N)(r,r,t) ~with r[r1 ,r2 , . . . ,rN and r
[r1 ,r2 , . . . ,rN):

C(N)~r,t !5E drP(N)~r,r,t !C(m)~r,0!. ~10!

In writing this equation we made explicit use of the fa
that theinitial distribution of the passive fieldu(r,0) is sta-
©2003 The American Physical Society03-1
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tistically independent of the advecting velocity field. Th
the operatorP(N)(r,r,t) can be written explicitly as

P(N)~r,r,t ![^R~r1 ,r1 ,t !R~r2 ,r2 ,t !•••R~rN ,rN ,t !&.
~11!

The key finding@4,5# is that the operatorP(N)(r,r,t) pos-
sesses aleft eigenfunction of eigenvalue 1, i.e., there exis
~for eachN) a time-independent functionZ(N)(r) satisfying

Z(N)~r!5E drZ(N)~r!P(N)~r,r,t !. ~12!

The functionsZ(N) are referred to as ‘‘statistically preserve
structures,’’ being invariant to the dynamics, even thoughthe
operator is strongly time dependent and decaying. How to
form, from these functions, infinitely many conserved va
ables in the decaying problem was shown in Ref.@4#, and is
discussed again in Sec. III. The functionsZ(N)(r) are homo-
geneous functions of their arguments, with anomalous s
ing exponentszN :

Z(N)~lr!5lzNZ(N)~r!1•••, ~13!

where ‘‘••• ’’ stand for subleading scaling terms. Since E
~12! containsZ(N)(r) on both sides, the scaling exponentzN

cannot be determined from dimensional considerations,
it can be anomalous. More importantly, it was shown that
correlation functions of the forced case,F (N)(r) Eq. ~3!, have
exactly the same scaling exponents asZ(N)(r) @5#. In the
scaling sense

F (N)~r!;Z(N)~r!. ~14!

This is how anomalous scaling in passive fields is und
stood.

Besides exactly soluble examples in which the advec
velocity field is nongeneric~i.e., d-correlated in time! the
existence of eigenfunctions of eigenvalue 1 of the tim
dependent propagator was demonstrated fully only in s
models of turbulence. While the present authors believe
shell models contain a lot of the robust properties of r
turbulence, this belief is not universally accepted in the co
munity. It is therefore necessary to demonstrate that
mechanism sketched above exists indeed in the full probl
Eqs.~1! and~2!. This had been done for third-order correl
tions within the Lagrangian formulation in Ref.@3#. The aim
of this paper is to demonstrate this in the Eulerian frame,
for correlation functions of order 2, 4, and 6.

In Sec. II we describe the simulations of Eqs.~1! and~2!
and the type of measurements that we performed. Sectio
is a theoretical digression, in which we analyze an exa
soluble simple model to guide ourselves as to how to ana
the numerical results to find the scaling forms of thenth-oder
propagators and their eigenfunctions. Section IV descri
the analysis of the data, and Sec. V offers a discussion a
summary of the paper.
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II. SIMULATIONS

We performed a direct numerical simulation~DNS! of
Eqs. ~1! and ~2! on a 204832048 two-dimensional~2D! ar-
ray. The forcingf in Eq. ~1! is random,d-correlated in time,
isotropic, and homogeneous. Itsk dependence is

^uf~k!u&}k exp@20.5~k/1024!2#. ~15!

This forcing is biased towards the small scales; this is d
because of the inverse energy cascade that characterizes
dimensional turbulence. The fluid dissipation is modeled
a hyperviscosity term proportional toD8u. In addition we
employed a ‘‘friction’’ term proportional tou in order to
stabilize the velocity field on the largest scales. The pass
field u dissipates normally as shown in Eq.~2!.

The simulations were performed for a decaying pass
field u, that is, the forcingf in Eq. ~2! was put to zero. The
initial conditions for theu field were of the form

ũ~k,t50!5d~k2k0!exp@ ig~k!#, ~16!

whereũ(k,t) is the Fourier transform of the real space va
able defined as

h̃~k!5
1

2pE drh~r!e2 ik•r ~17!

~from now on we will omit the tilde above the functions an
denote thek space functions only by their variables!. g(k) is
a random variable in the intervalgP@0,2p# whereg(k)5
2g(2k), ensuring thatu* (2k,0)5u(k,0), and therefore
that u(r,t) is real.

As the initial conditions foru and the forcing of theu
fields are both homogeneous and isotropic so are the sc
correlation functionsC(N)(r1 ,•••,rN ,t) defined in Eq.~9!, at
all times t. We measured thek space correlation functions:

C(N)~k1 , . . . ,kN ,t !d~k11•••1kN!5^u~k1 ,t !•••u~kN ,t !&,
~18!

where again the average^•••& is over initial conditions and
over realizations of theu field. Thed function appears due to
translational invariance.

In accordance with Eq.~10! we define thek space propa-
gator:

C(N)~k,t !5E dk8P(N)~k,k8,t !C(N)~k8,0!. ~19!

A. The two-point propagator

The only two-point correlator that is not zero isC(2)(k,
2k,t)5^u(k)u* (k)&. Because of the isotropy of the initia
conditions and the driving field, the correlator depends o
on the magnitude ofk. We can therefore consider th
second-order structure functionS(2)(k,t)5C(2)(k,2k,t),
and it propagatorP̂(2)(k,k8,t).

In discretek space~as in our simulation on a grid! the
propagatorP̂(2)(k,k8,t) has a matrix representation. For th
3-2
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EULERIAN STATISTICALLY PRESERVED STRUCTURES . . . PHYSICAL REVIEW E 68, 036303 ~2003!
choice of initial conditions as in Eq.~16!, S(2)(k,t) is simply
the k0th column of the propagator

S(2)~k,t !5E dk8P̂(2)~k,k8,t !S(2)~k8,0!5P̂(2)~k,k0 ,t !.

~20!

In Fig. 1 we plot such a column of the two-point propagat
at nine different times. Two properties of the propaga
should be noticed: as time progresses the overall ampli
decreases due to the decay, while the maximum moves f
the initial k0 to lower values ofk. In Secs. III and IV we will
find the scaling form of this propagator.

B. Multipoint propagators

In the case of the multipoint correlator the overalld func-
tion and the isotropy of the fields do not reduce the dep
dence to a one-variable function. The propagators are th
fore functions of manyk vectors. It turns out however tha
measurement of the statistics for objects depending on m
k vectors is very taxing. We opted therefore the extract fr

FIG. 1. P̂(2)(k,300,t) for nine different times. The first time is
t30, i.e., the eddy turnover time at scalek530, in lightest gray.
Later times, in darker and darker grays, are at 2t30, 3t30, etc., until
9t30.
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the DNS partial information on the dynamics of th
2N-order structure functions withN.1:

S(2N)~k,t !5^uu~k,t !u2N&. ~21!

Accordingly we define the reduced propagators:

S(2N)~k,t !5E dk8P̂(2N)~k,k8,t !S(2N)~k8,0!. ~22!

We note that one does not expect single power laws
the fused 2N-order structure functions withN.1; they ge-
nerically include subleading contributions pertaining to pro
ucts of lower order structure functions. Moreover, the
duced propagators are not Hermitian~the full ones are!, and
therefore do not lend themselves to direct eigenval
eigenfunction decomposition. We will therefore solve expl
itly a simple model in the following section to learn how
think about the scaling properties of the fused propagat
The numerics show clearly that the qualitative features of
reduced propagators are the same as those seen in
second-order propagator, and therefore a scaling analys
expected to be still useful. In Fig. 2 we present the numer
results for the fourth- and sixth-order reduced propagators
the same 9 different times, stressing the similar qualitat
behavior to that of the two-point propagator. We will learn
the following section how to think about the scaling prope
ties of these objects and how to replot the numerical res
in proper rescaled variables.

III. AN EXACTLY SOLVABLE CASE

In order to motivate the data analysis presented in Sec
we turn now to the Kraichnan model for passive scalar
vection. The model is exactly solvable, and examining
analytic forms of the propagators offers clues to what sho
be expected in the generic case. In principle we could p
form this analysis in terms of the Kraichnan model for
two-dimensional passive scalar. In fact, it is sufficient to co
sider the shell-model version; the latter is very transparen
analytic manipulations, and for our purposes the res
throw equally useful light on how to perform the analysis
the DNS results.
FIG. 2. P̂(4)(k,300,t) ~upper panel! and P̂(6)(k,300,t) ~lower panel! for the same nine different times as in Fig. 1.
3-3
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A. The Kraichnan shell model

The Kraichnan shell model for passive scalar advect
@4,6#, as all other shell models of turbulent flows, is writte
in terms of Fourier components of the field. The Four
components are restricted to shells denoted by the indem,
and the equation takes on the form

dum

dt
5Lm,nun ,

Lm,n5 ikm11um11dm11,n1 ikmum* dm21,n2kkm
2 dm,n .

~23!

Herekm are the shellk vectors,km5k0lm for somek0 and
l. The shell components of the velocity field,um(t), are
Gaussian random variables,d-correlated in time, satisfying

^un~ t !um* ~ t8!&5c0 dn,md~ t2t8!l2jm. ~24!

Herej is the scaling exponent of theu field.

B. The second-order propagator

The second-order correlator satisfies the explicit equa
~see Ref.@5#!

d

dt
Sn

(2)~ t !5~Mn,m
(2) 2kkn

2!Sm
(2)~ t !, ~25!

where Sn
(2)(t) is the shell equivalent of the second-ord

structure function in Eq.~20!,

Sn
(2)~ t !5^uun~ t !u2&. ~26!

The time evolution operatorM(2) has the form

Mn,m
(2) 5~an1an11!dn,m2andn21,m2an11dn11,m ,

~27!

where

an[2c0k0
2S kn

k0
D z2

52c0k0
2lz2n, ~28!

and z2522j is the dimensional scaling of the two-poin
correlation function. The operatorM(2) has the following
useful scaling property:

l2z2pMn1p,m1p
(2) 5Mn,m

(2) . ~29!

The second-order propagator has, in the limit of vanish
viscosity, the explicit form

Pnum
(2) ~ t !5exp~ tM(2)!un,m . ~30!

Note that the time evolution operator and the propaga
are both Hermitian, and thus admit an eigenvector decom
sition. The time evolution operator has two types of eige
vectorscn

(2,q) andc̃n
(2,q) which we can regard as slow mode

and fast modes, respectively. Here the indexk stands for the
eigenmode index. The fast modes are dominated by the
03630
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cous term, their support is in the viscous range, and they
essentially be taken to bec̃n

(2,q)5dn,q for some shellq with
the shell indexq.md , above which viscosity dominates Eq
~25!. The transition shellmd is determined by the condition
kkmd

2 5c0kmd

z2 . For the fast modes we have the following a

proximate equation:

d

dt
c̃n

(2,q)52kkn
2c̃n

(2,q) , ~31!

therefore their eigenvalues arebq52kkq
2 .

For slow modescn
(2,q) , which have their support on shell

smaller thanmd , the dissipative term can be neglected a
they satisfy an eigenfunction equation of the form

bqcn
(2,q)5Mn,m

(2) cm
(2,q) . ~32!

For a sufficiently large inertial range we can use the sc
ing property~29! to get

bqcn
(2,q)5l2z2pMn1p,m1p

(2) cm
(2,q) . ~33!

Shifting indices we rewrite

bqcn2p
(2,q)5l2z2pMn,m

(2) cm2p
(2,q) . ~34!

Defining now a vector

xn[cn2p
(2,q) , ~35!

we have

lz2pbqxn5Mn,m
(2) xm . ~36!

We can thus definecn
(2,q1p)[xn , an eigenfunction of the

time evolution operatorM(2) with eigenvaluelz2pbq .
We can therefore conclude that the eigenvectors and

genvalues may be obtained from each other by shift of
indices:

cn1p
(2,q1p)5cn

(2,q) , ~37!

bq1p5lz2pbq . ~38!

Figure 3 demonstrates that indeed two different eig

FIG. 3. A plot of the eigenvectorscn
2,15 ~squares! and cn120

2,35

~triangles!, for nP@0,30#.
3-4
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EULERIAN STATISTICALLY PRESERVED STRUCTURES . . . PHYSICAL REVIEW E 68, 036303 ~2003!
functions coincide once shifted with respect to each othe
follows from Eq.~38! that

bq}aq . ~39!

In Fig. 4 the spectrum of the eigenvalues is plotted, sho
ing the two expected regions: a region for which the scal
of the eigenvalues is}kn

z2 for the slow modes, and}kn
2 for

the fast modes.
The lowest eigenvalue is proportional toa0. The eigen-

functioncn
(2,0) associated with it can be calculated explicit

and it exhibits a normal, dimensional, scaling in the iner
range:

cn
(2,0)}~kn /k0!2z2. ~40!

Using Eqs.~37! and~40!, which imply thatcn
(2,q) has a scal-

ing ‘‘tail’’ with exponent z2, starting after shellq we estab-
lish

cn
(2,q)}~kn /kq!2z2}aq /an , q,n,md . ~41!

We now use these results to learn how to rescale
numerical data. Suppose that we started with an initial c
dition in some shelln in the inertial range,Sp

(2)(0)5dp,n .
The fast modes do not contribute significantly to the tim
dependence, since they decay fast and anyhow have no
port in the inertial range. Thus, using only the slow mod
and Eqs.~27! and ~30!, we have, forp,n,

Sp
(2)~ t !5 (

q51

p

cn
(2,q)eaqtcp

(2,q)}
1

apan
(
q51

p

aq
2eaqt}P pun

(2)~ t !.

~42!

In going from the first to the second line we inserted t
d-function initial conditions, getting thus a column of th
propagatorP pun

(2)(t). Remember that in our DNS calculation
we fixed the column index, and are interested in the sca
behavior with respect to the row index and time. Theref
we compute now~up to an overall dimensional constant!

FIG. 4. The eigenvalues, plotted from small to large. The eig
values are well fitted by the analytic predictionskm

z2 ~dashed line!,
for the slow modes, and bykm

2 ~dotted line! for the fast modes. The
transition to the viscous range occurs at shellmd580.
03630
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lz2mP p2mun
(2) ~lz2mt !5

lz2m

ap2man
(
q51

p2m

aq
2eaq1mt

5
1

apan
(
q51

p2m

aq1m
2 eaq1mt

5
1

apan
(

q5m11

p

aq
2eaqt

5P pun
(2)~ t !2

am

ap
P mun

(2) ~ t !, ~43!

where we have used the explicit form of the propagator
Eqs. ~42! and ~28!. For m much smaller thanp we can ne-
glect the second term. Then we conclude that the propag
is a homogeneous function of the variableskp andt. Explic-
itly, multiplying by t,

tP (2)~kp ,kn ,t !5~l2z2mt !P (2)~lmkp ,kn ,l2z2mt !.
~44!

For fixed kn this is a homogeneous function of two arg
ments which can be always written in the form

P (2)~kp ,kn ,t !5
const

ant
L~apt !, ~45!

for some functionL(x). The symmetry betweenp andn is
restored by realizing that the asymptotic form ofL(x) is 1/x
for largex.

This scaling form was also found in the study of the g
neric shell models of passive scalar advection~arbitrary time
dependence in the velocity correlations! @5# and we will
show that the same scaling form survives when we go b
to the generic model studied by DNS.

C. The multipoint propagators

The invariance of Eq.~23! under a uniform phase chang
un→eifun dictates that the only nonzero correlation fun
tions will have an equal number of variablesun and conju-
gated variablesum* . We define

Ci 1 , . . . ,i m , j 1 , . . . ,j N

(2N) ~ t !5^u i 1
~ t !•••u i N

~ t !u j 1
* ~ t !•••u j N

* ~ t !&.
~46!

As in the two-point case we can define the respective mu
point differential time derivative operator, analogous to E
~25!. In the limit of vanishing viscosity,

d

dt
Ci,j

(2N)~ t !5M i,ju i8,j8
(2N) Ci8,j8

(2N)
~ t !. ~47!

The respective propagator is defined by

Ci,j
(2N)~ t !5Pi,ju i8,j8

(2N)
~ t !Ci8,j8

(2N)
~0!, ~48!

Pi,ju i8,j8
(2N)

5exp~ tM(2N)!u i,ju i8,j8 . ~49!

-

3-5
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Because of the time reversibility of the statistics of theu
fields, and the antihermiticity of the unaveraged differen
operatorL in Eq. ~23!, Lm,n* 52Ln,m , both the time deriva-
tive operatorM(2N) and the propagator itself are Hermitia
and therefore admit eigenvalue decomposition. Furtherm
the operatorM(2N) has the following scaling property:

M i,ju i8,j8
(2N)

5l2z2pM i1p,j1pu i81p,j81p
(2N) . ~50!

As in the two-point case the dynamics within the scali
range is determined by slow modes,

bk
(2N,l )c i,j

(2N,l ,k)5M i,ju i8,j8
(2N) c i8,j8

(2N,l ,k) . ~51!

In this equation the indexl stands for a family of eigen
modes, andk for their index within the family. Eachl family
can be obtained from any one of its members by shifting
indices. The eigenvalues of the modes within a given fam
can be obtained also by a shift,

c i1p,j1p
(2N,l ,k1p)5c i,j

(2N,l ,k) , ~52!

bk1p
(2N,l )5lz2pbk

(2N,l ) . ~53!

Note that in the two-point case we had only one family
eigenmodes. Here we added the indexl to the eigenvalues
and eigenmodes to distinguish the different families. N
also that in Eq.~53! the scaling exponent of the eigenvalu
is z2; this stems from the scaling properties of the differe
tial operatorM(2N), cf. Eq. ~50!. However, the eigenmode
display in general anomalous scaling which can be rep
sented by

c i,j
(2N,l ,k)5l2p z2N,l c i1p,j1p

(2N,l ,k) , ~54!

wherez2N,l is the ~anomalous! scaling exponent of thel th
family of eigenmodes.

Since the DNS’s were analyzed in terms of fused obje
we focus on initial conditions in Eq.~48! for which all the
2N indices are the same. We also measure the resu
structure functions

Sn
(2N)5^uunu2N&. ~55!

This procedure will extract a fused propagator for whi
there are only two indices, and we denote it below
P pun

(2N)(t). This propagator is not Hermitian, it has in gene
no eigenfunction decomposition, but we can understand
scaling form of any of its columns from the knowledge of t
full propagator and its eigenfunctions.

The equivalent of Eq.~42! for Sk
(2N)(t50)5dk,n , p,n,

summing over all families of slow modes~i.e., over the index
l ) is
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Sp
(2N)~ t !5(

l
(
q51

p

cn
(2N,l ,q)eaqtcp

(2N,l ,q)

5(
l

Cl

~apan!
z2N,l

z2

(
q51

p

aq
~2z2N,l /z2! eaqt5P pun

(2N)~ t !.

~56!

In going from the first to the second line we have used
fact that

c i ,i , . . . ,i
2N,l ,p }S a i

ap
D 2z2N,l /z2

. ~57!

This follows directly from Eqs.~52! and ~54!.
Using the same argumentation as in Eq.~43!, we get

Ppun
(2N)~ t !5(

l

Cl

~ant !z2N,l /z2
L (2N,l )~apt !, ~58!

where again theCl ’s are dimensional constants and the fun
tionsL (2N,l )(x) are some functions with the asymptotic for
L (2N,l )(x)'x2z2N,l /z2 for x large. We note that for suffi-
ciently long times and if the scaling exponents are well se
rated, we can expect the sum to be dominated by the lea
scaling exponent.

IV. DATA ANALYSIS

The detailed analysis that was possible for the sim
model of Sec. III is not available for the generic model, Eq
~1! and ~2!. Our strategy is to assume that the scaling for
derived in the last section are still valid for the gene
model, and to demonstrate this by replotting the data acc
ingly. We will see that these predictions are born out by
data.

A. analysis of the two-point propagator

In light of Eq. ~44!, we expect the second-order propag
tor P̂(2)(k,k0 ,t) to be, for a fixedk0, a homogeneous func
tion of the variablekt1/z2, and to decay as 1/t:

P̂(2)~k,k0 ,t !}
1

t
H (2)~kt1/z2!, ~59!

whereH (2) is some function. We test the correctness of t
form in Fig. 5. To this aim we replot that data shown in Fi
1 in different coordinates, multiplied byt and as a function of

k̂5kt1/z2. ~60!

The quality of the data collapse appears to strongly sup
the proposed scaling form. We note that the data collaps
superior on the right of the maximum, and less convincing
its left. We believe that this stems from two reasons. Fi
there is better statistics for the right part of the curve, sim
because it belongs to largerk vectors where the angular av
3-6
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erage is more extensive. Second, the left part of the curv
more sensitive to the finite-size effects, particularly to t
fact that the driving velocity field loses its scaling form clo
to L. With all the limitations of the numerical simulations w
consider the data collapse as very satisfactory.

If the prediction for the two-point function holds, then w
will have the following for the time-dependent integral:

E
0

`

P̂(2)~k,k8,t !dk'
1

t111/z2
E

0

`

H (2)~ k̂!dk̂}
1

t111/z2
.

~61!

In Fig. 6, we show that indeed after an initial period t
integral settles on a scaling form consistent with Eq.~61!.

Using the form of the propagator we can establish
existence of a left eigenmode of eigenvalue 1 of the tw
point propagator. Integrating over the two sides of Eq.~12!
we have a time-independent expression on the left-hand s
We therefore expect that the weighted integral of the pro
gator with the functionZ(2) will be constant:

FIG. 5. tP̂(2)(k,300,t) for nine different times~light gray, earli-
est; dark gray, last!.

FIG. 6. The integral of the two-point propagato

*0
`P̂(2)(k,300,t)d2k, ~solid line! as a function of time. The dotted

line is the expectedt2(111/z2) ~time is measured in this figure, an
in the ones that follow, in units oft30, the eddy turnover time of
k530).
03630
is
e

e
-
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E Z(2)~k!P(2)~k,k8,t !d2k}E
0

`

k222z2
H (2)~kt1/z2!

t
kdk

5E
0

` H~ k̂!

k̂11z2
dk̂5const, ~62!

where we have used the fact that in an isotropic tw
dimensional system we haveZ(2)(k);F (2)(k)}k222z2. We
note that the constancy of this integral should be judged
the background of the decaying function, as done in Fig
We see that while the second-order structure function dec
over three orders of magnitude, the ‘‘constant’’ objec
change by a factor of 2. The lack of constancy can be att
uted to the sensitivity to the outer scale as seen in the
collapse in Fig. 5. If the collapse on the left side of the cur
were perfect, so would be the constancy of the weigh
integral. Note that in the calculation we have employedz2
50.67 in agreement with Ref.@7#.

B. Analysis of the multipoint propagators

Examining Eq.~58!, we expect that for long times th
functional form of the propagator for the fused correlati
function defined in Eq.~22! is

P̂(2N)~k,k8,t !}
1

tz2N /z2
H (2N)~kt1/z2!, ~63!

wherez2N is the leading scaling exponent for the 2Nth cor-
relation function. In Fig. 8 we demonstrate the data colla
obtained by assuming this form for the fourth- and six
order propagators. We notice the same excellent collaps
the right-hand side of the function as in the second-or
propagator. Also the problems with the outer scale show
in a similar manner, giving less than impressive collapse
the left hand part of the function. For the present data c
lapse we employed simple scalingz2N5Nz2; our data do not
support strongly anomalous exponents. We should st

FIG. 7. The integral of the two-point propagatorP(2)(k,300,t)
weighed by the left zero modeZ(2)(k) ~solid line!, compared to the
integral of the unweighted second-order structure function~dotted
line!.
3-7
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FIG. 8. tz4 /z2P̂(4)(k,300,t) ~upper panel! and tz6 /z2P̂(6)(k,300,t) ~lower panel! for nine different times~light gray, earliest; dark gray
last!.
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however that the relatively short scaling range does not al
a definite statement about the normality vs the anomaly
the scaling exponents.

Using the form of the fused multipoint correlators we c
again predict the time behavior of their integral:

E
0

`

P̂(2N)~k,k8,t !dk'
1

t (11z2N)/z2
E

0

`

H~ k̂!dk̂}
1

t (11z2N)/z2
.

~64!

In Fig. 9 the time dependence of the integrals is plott
showing agreement of similar quality to Fig. 6.

As in the two-point case, weighing the fused multipo
functions by the appropriate multipoint fused steady st
correlators should yield a constant:

E Z(2N)~k!P̂(2N)~k,k8,t !d2k}E
0

` H (2N)~kt1/z2!

k21z2Ntz2N /z2
kdk

5E
0

` H (2N)~ k̂!

k̂11z2N
dk̂5const,

~65!
03630
w
f

,

t
e

where Z2N(k)}k222z2N. The quality of the constancy is
demonstrated in Fig. 10. Again finite-size effects lead
some decrease in time of these weighted objects, which n
ertheless is very much reduced compared to the deca
correlation functions.

V. CONCLUDING REMARKS

We have demonstrated in this paper that the generic
vection of a passive scalar by a velocity field that obeys
Navier-Stokes equations can be discussed in terms of E
rian statistically preserved structures. By initiating a dec
with d-function initial conditions~concentrated onk5300)
we have found numerically the corresponding columns of
time-dependent propagators for the second-, fourth-
sixth-order correlation functions@where for the fourth- and
sixth-order objects we considered partial~‘‘fused’’ ! informa-
tion#. Note that in contrast to the Lagrangian formulation
statistically preserved structures@3#, for which there is no
preserved structure corresponding to the second-order c
lation, in the Eulerian formulation such an object exists a
had been analyzed explicitly. We have used a simple~non-
generic! model of passive scalar advection to guess the a
lytic scaling form of the propagators in the generic proble
FIG. 9. The integral of the four-point~upper panel! and six-point~lower panel! propagators~solid line!, *0
`P̂(2m)(k,300,t)d2k, compared

with the expectedt2(11z2N)/z2 ~dotted line!.
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FIG. 10. The integral of the four-point propagatorP(4)(k,300,t) ~upper panel! and the six-point propagatorP(6)(k,300,t) weighted by the
left zero modesZ(4)(k) andZ(6)(k), respectively~solid line! compared to the integral of the unweighted object~dotted line!.
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The test for the relevance of this guessed form is the d
collapse shown in Figs. 5 and 8. The guessed time de
dence appears to be in close correspondence with the da
shown in Figs. 6 and 9.

The analytic forms of the propagators predict the ex
tence of eigenmodes with eigenvalue 1~statistically pre-
served structures!. We believe that this is an important dem
onstration of Eulerian statistically preserved structures i
generic flow. The numerical evidence for the constancy
the latter is encouraging, if not fully conclusive, as seen
Figs. 7 and 10. We attributed the~relatively small! decrease
in amplitude of the putative statistically preserved structu
to the less than perfect data collapse at the largest sc
~smallestk vectors! that are seen in Figs. 5 and 8. These
turn stem from the intervention of the outer scale in o
scaling range, a boundary effect that we did not succee
eliminate in our modest-size simulations. It would be int
esting to see whether larger 2D simulations could rem
this finite-size effect to demonstrate conclusively the c
stancy of the statistically preserved structures. In addit
larger scaling ranges in improved numerics will help to d
tinguish better between normal and anomalous scaling e
nents.
la
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In concluding we wish to point out an additional benefit
the present formulation. Usually in modeling turbulent a
vection it is customary to resort to dubious concepts such
‘turbulent diffusion’ in order to write a diffusion equation fo
the correlation functions. The present approach indicate
much better procedure, i.e., to find, for a given turbule
field, the form of the propagator which can be then used
provide analytic predictions for any initial (t50) correlation
function. This procedure may be quite interesting for mo
complex hydrodynamic flows with unusual boundaries or
herent structures. We believe that when the turbulence is
ficiently well developed scaling forms for the propagator w
exist, and once found can be used to solve efficiently a
statistical initial value problem.
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